Stochastic Parametrization and Model Uncertainty
نویسندگان
چکیده
Stochastic parametrization provides a methodology for representing model uncertainty in ensemble forecasts, and also has the capability of reducing systematic error through the concept of nonlinear noise-induced rectification. The stochastically perturbed parametrization tendencies scheme and the stochastic backscatter scheme are described and their impact on medium-range forecast skill is discussed. The impact of these schemes on ensemble data assimilation and in seasonal forecasting is also considered. In all cases, the results are positive. Validation of the form of these stochastic parametrizations can be found by coarse-grain budgets of high resolution (e.g. cloud-resolving) models; some results are shown. Stochastic parametrization has been pioneered at ECMWF over the last decade, and now most operational centres use stochastic parametrization in their operational ensemble prediction systems these are briefly discussed. The seamless prediction paradigm implies that serious consideration should now be given to the use of stochastic parametrization in next generation Earth System Models.
منابع مشابه
Stochastic parametrizations and model uncertainty in the Lorenz '96 system.
Simple chaotic systems are useful tools for testing methods for use in numerical weather simulations owing to their transparency and computational cheapness. The Lorenz system was used here; the full system was defined as 'truth', whereas a truncated version was used as a testbed for parametrization schemes. Several stochastic parametrization schemes were investigated, including additive and mu...
متن کاملAssessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models.
The need to represent uncertainty resulting from model error in ensemble weather prediction systems has spawned a variety of ad hoc stochastic algorithms based on plausible assumptions about sub-grid-scale variability. Currently, few studies have been carried out to prove the veracity of such schemes and it seems likely that some implementations of stochastic parametrization are misrepresentati...
متن کاملAn Optimization Model for Multi-objective Closed-loop Supply Chain Network under uncertainty: A Hybrid Fuzzy-stochastic Programming Method
In this research, we address the application of uncertaintyprogramming to design a multi-site, multi-product, multi-period,closed-loop supply chain (CLSC) network. In order to make theresults of this article more realistic, a CLSC for a case study inthe iron and steel industry has been explored. The presentedsupply chain covers three objective functions: maximization ofprofit, minimization of n...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملA novel bi-level stochastic programming model for supply chain network design with assembly line balancing under demand uncertainty
This paper investigates the integration of strategic and tactical decisions in the supply chain network design (SCND) considering assembly line balancing (ALB) under demand uncertainty. Due to the decentralized decisions, a novel bi-level stochastic programming (BLSP) model has been developed in which SCND problem has been considered in the upper-level model, while the lower-level model contain...
متن کامل